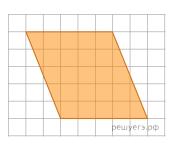

Централизованное тестирование по математике, 2011


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

2. На клетчатой бумаге с клетками размером 1 см х 1 см изображён параллелограмм. Найдите его площадь в квадратных сантиметрах.

- 1) 35 2) 15 3) 25 4) 20 5) 30
- **3.** Если $6\frac{1}{3}: x = 2\frac{22}{27}: 1\frac{7}{9}$ верная пропорция, то число x равно:

1)
$$\frac{4}{9}$$
 2) $3\frac{1}{44}$ 3) 2 4) $3\frac{1}{3}$ 5) 4

- 4. Если 18% некоторого числа равны 27, то 30% этого числа равны:
 - 1) 63
- 2) 36 3) 45
- 5) 55

- **5.** Если 11x + 19 = 0, то 22x + 17 равно:
 - 1) 23
- 2) -17 3) -26 4) 17
- **6.** Результат упрощения выражения $6^{2x+1} 6^{2x}$ имеет вид:

 - 1) $6^{\frac{2x+1}{2x}}$ 2) $5 \cdot 6^{2x}$ 3) 6^{4x+1} 4) 12
- 7. Сумма корней (или корень, если он один) уравнения $(x+2)\sqrt{x-5}=0$ равна:
 - 1) -2
- $2) 3 \qquad 3) 5 \qquad 4) -5$
- 8. От листа жести, имеющего форму квадрата, отрезали прямоугольную полосу шириной 8 дм, после чего площадь оставшейся части листа оказалась равной 9 gm^2 . Длина стороны квадратного листа (в дециметрах) была равна:

- **9.** Значение выражения $2^{-8} \cdot (2^{-5})^{-2}$ равно:
 - 1) 4 2) $\frac{1}{4}$ 3) 2^{-15} 4) $\frac{1}{2}$ 5) 2^{-18}
- 10. Площадь осевого сечения цилиндра равна 20. Площадь его боковой поверхности равна:

 - 1) 40π 2) 10π
- 3) 20π
- 4) 20
- **11.** Найдите значение выражения $270 \cdot \frac{5}{7} \left(\frac{5}{7} + \frac{1}{10}\right) : \frac{1}{270}$.

 - 1) 0,1 2) $169\frac{5}{7}$ 3) -0,1 4) 27 5) -27

12. Упростите выражение $\frac{x^2+6x+9}{x^2+3x}:\frac{x^2-9}{x^3}$.

1)
$$\frac{x^2}{x+3}$$
 2) $\frac{x^2}{3-x}$ 3) $\frac{x+3}{x-3}$ 4) $\frac{x^2}{x-3}$ 5) $\frac{(x+3)^2}{x^4}$

13. Параллельно стороне треугольника, равной 6, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 4. Найдите отношение площади полученной трапеции к площади исходного треугольника.

1)
$$\frac{2}{3}$$
 2) $\frac{5}{9}$ 3) $\frac{4}{9}$ 4) 0,5 5) $\frac{1}{3}$

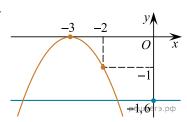
14. Сумма координат точки пересечения прямых, заданных уравнениями 3x + y = -3 и x + y = 5(y - 8), равна:

15. Количество целых решений неравенства $\frac{(x+2)^2-4x-13}{(x-5)^2}>0$ на промежутке [-4;5] равно:

16. В ромб площадью $16\sqrt{6}$ вписан круг площадью 6π . Сторона ромба равна:

1) 12 2) 16 3) 8 4)
$$\frac{8\sqrt{6}}{3}$$
 5) $\frac{4\sqrt{6}}{3}$

17. Расположите числа $\sqrt[5]{3}$; $\sqrt[3]{2}$; $\sqrt[15]{28}$ в порядке возрастания.


1)
$$\sqrt[3]{2}$$
; $\sqrt[5]{28}$; $\sqrt[5]{3}$; 2) $\sqrt[5]{3}$; $\sqrt[5]{28}$; $\sqrt[3]{2}$; 3) $\sqrt[5]{3}$; $\sqrt[5]{28}$; 4) $\sqrt[15]{28}$; $\sqrt[3]{2}$; $\sqrt[5]{3}$; 5) $\sqrt[3]{2}$; $\sqrt[5]{3}$; $\sqrt[5]{3}$; $\sqrt[5]{28}$

18. Найдите наименьший положительный корень уравнения $3\sin^2 x + \cos x + 1 = 0$.

1)
$$\pi$$
 2) $\frac{\pi}{2}$ 3) $\pi - \arccos \frac{4}{3}$ 4) $\frac{3\pi}{2}$ 5) $\arccos \frac{4}{3}$

19. Найдите произведение корней уравнения
$$\frac{2}{x+4} + 1 = \frac{3}{x^2 + 8x + 16}$$

- 20. Диагонали трапеции равны 8 и 15. Найдите площадь трапеции, если ее средняя линия равна 8,5.
- **21.** Сумма корней (или корень, если он один) уравнения $7 \cdot 7^{\log_2 x} = 245 + 2 \cdot x^{\log_2 7}$ равна ...
- **22.** Найдите сумму целых решений неравенства $2^{3x} 10 \cdot 4^x + 2^{x+4} \le 0$.
- **23.** По двум перпендикулярным прямым, которые пересекаются в точке O, движутся две точки M_I и M_2 по направлению к точке O со скоростями 1 $\frac{M}{C}$ и 2 $\frac{M}{C}$ соответственно. Достигнув точки O, они продолжают свое движение. В первоначальный момент времени M_IO = 3 м, M_2O = 11 м. Через сколько секунд расстояние между точками M_I и M_2 будет минимальным?
- **24.** Найдите $5x_1 \cdot x_2$, где x_1 , x_2 абсциссы точек пересечения параболы и горизонтальной прямой (см. рис.).

- **25.** Четырёхугольник *ABCD* вписан в окружность. Если $\angle BAC = 75^{\circ}$, $\angle ABD = 50^{\circ}$, то градусная мера между прямыми *AB* и *CD* равна ...
 - **26.** Найдите значение выражения: $\frac{\sin^2 64^\circ}{8 \sin^2 8^\circ \cdot \sin^2 58^\circ \cdot \sin^2 74^\circ \cdot \sin^2 82^\circ}$
- **27.** В арифметической прогрессии 70 членов, их сумма равна 700, а сумма членов с нечетными номерами на 140 больше суммы членов с четными номерами. Найдите сороковой член этой прогрессии.
- **28.** В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α . Боковая сторона образует с плоскостью α угол, синус которого равен $\frac{7\sqrt{3}}{18}$. Найдите $36\sin\beta$, где β угол между диагональю трапеции и плоскостью α .

- **29.** Количество целых решений неравенства $3^{x+8} + \log_{0,5}(27-x) > 22$ равно ...
- **30.** Основанием пирамиды *SABCD* является ромб со стороной $\sqrt{66}$ и углом *BAD*, равным $\arccos \frac{3}{4}$. Ребро *SD* перпендикулярно основанию, а ребро *SB* образует с основанием угол 60°. Найдите радиус *R* сферы, проходящей через точки *A*, *B*, *C* и середину ребра *SB*. В ответ запишите значение выражения R^2 .